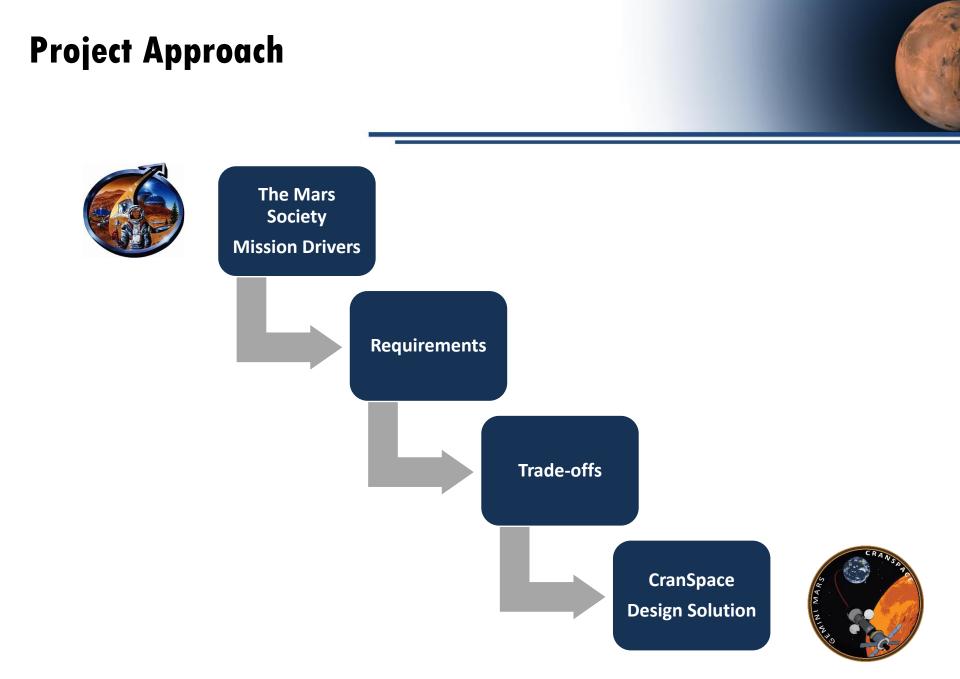


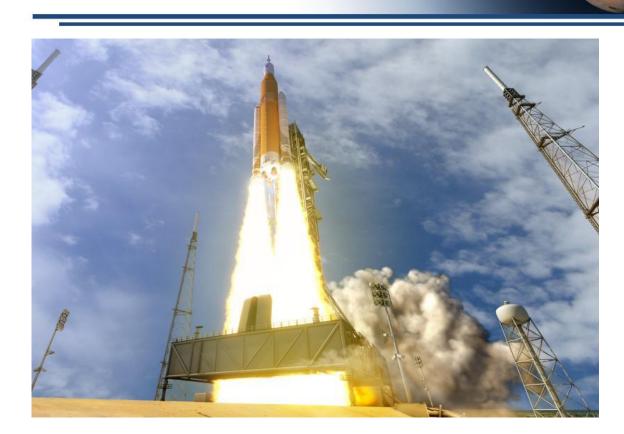
Gemini Mars International Design Competition

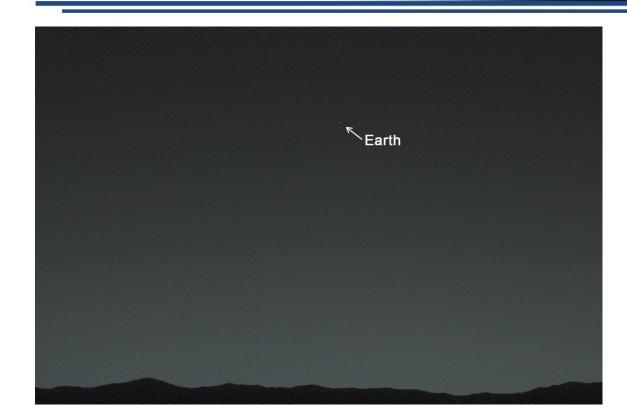
19th Annual Mars Society Convention

24th September 2016

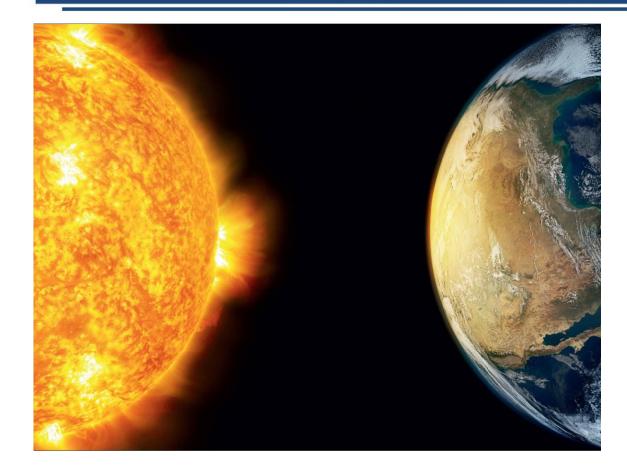

Presentation Overview

- Mission Outline
- Introducing the CranSpace Solution
- Trajectory
- Journey to Mars (and back)
 - Launch
 - Venus Fly-By
 - Mars Fly-By
 - Earth Re-Entry
- Mission Cost
- Summary


"To design a **two-person flyby** mission to **Mars**, to be launched before the end of the **2024**, to recapture the imagination of the public and give direction to the U.S. human spaceflight program."


Payload to LEO

- TMI Payload: 41560 kg
- Required Propellant: 89300 kg
- Overall Mass: 146600 kg


Longest Human Duration in Space

- Furthest Distance from Earth: 78 million km
- Mission Duration:
 580 days

Solar Radiation

- Solar maximum occurs in 2024
- Max. radiation allowed Male: 3.25 Sv Female: 2.5 Sv

Mission Required Consumables

 Required Consumables (No Recycling)

Water: 5450 kg

Oxygen: 1000 kg

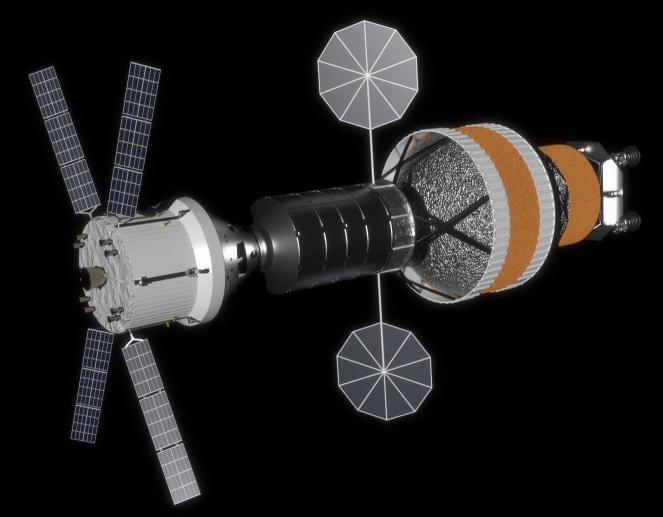
Food: 755 kg

Issues Away from Earth

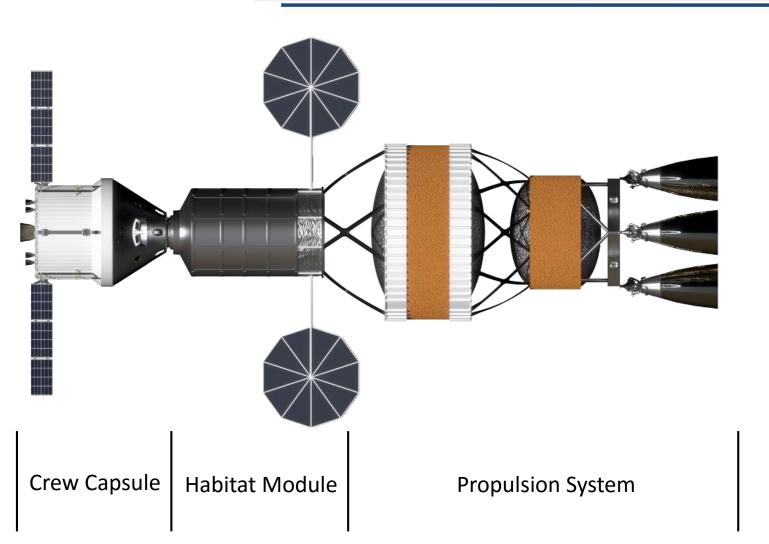
https://upload.wikimedia.org/wikipedia/commons/a/ac/Apollo_13-insignia.png https://i.ytimg.com/vi/1WHzyzILABc/maxresdefault.jpg **RQ01** Capability of **supporting two crew** for the entire mission

- **RQ02** Compatibility with **existing launchers** and spacecraft
- **RQ03** Hypersonic re-entry shall not exceed spacecraft and crew capabilities
- **RQ04** The spacecraft shall provide sufficient **radiation protection** for a maximum extended-period dose of **0.730 Sv**
- **RQ05** No critical single point failures in the life-support system
- RQ06 Mission shall be completed by end of 2024

Design and Risk Philosophy


Technology **heritage** is the backbone of the CranSpace design philosophy.

- Reduces implementation risks
 - Less time spent on R&D
 - Less uncertainty in margins
- Reduces mission risks
 - Draws on lessons learnt
 - Targeted mitigation for known issues


Emphasis on **redundancy** to reduce critical single point failures

CranSpace Design Solution - TOTEM

Transfer-vehicle for Observation, Testing and Exploration of Mars

The Spacecraft TOTEM

Ascent/Re-entry Capsule

Driving Requirements

- Available for 2021 launch
- Rated for interplanetary travel
- Capable of hypersonic re-entry

Trade-off Parameters

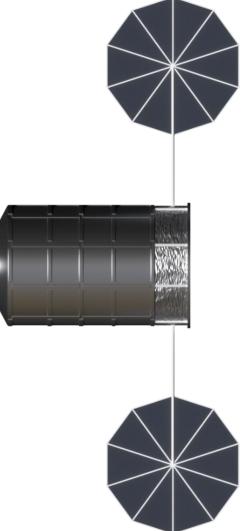
- Mass
- Technology Readiness Level (TRL)
- Design uncertainty
- Service module capabilities
- Window size

Solution

- Orion capsule
- Interior augmentations e.g. removing spare seats

Habitat Module

Driving Requirements


- Available for 2021 launch
- Required habitable living volume above 5.1m³/CM
- Protection from radiation

Trade-off Parameters

- Design heritage
- Pressurised volume
- Interface with capsule
- Interior re-design

Solution

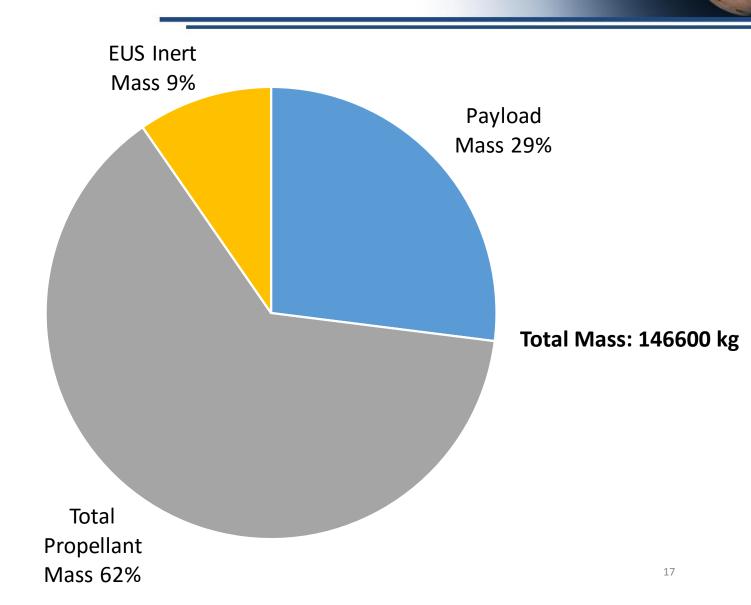
- Multi-Purpose Logistics Module (MPLM)
- Add internal radiation shielding / sleep chamber
- Service module heritage from Cygnus

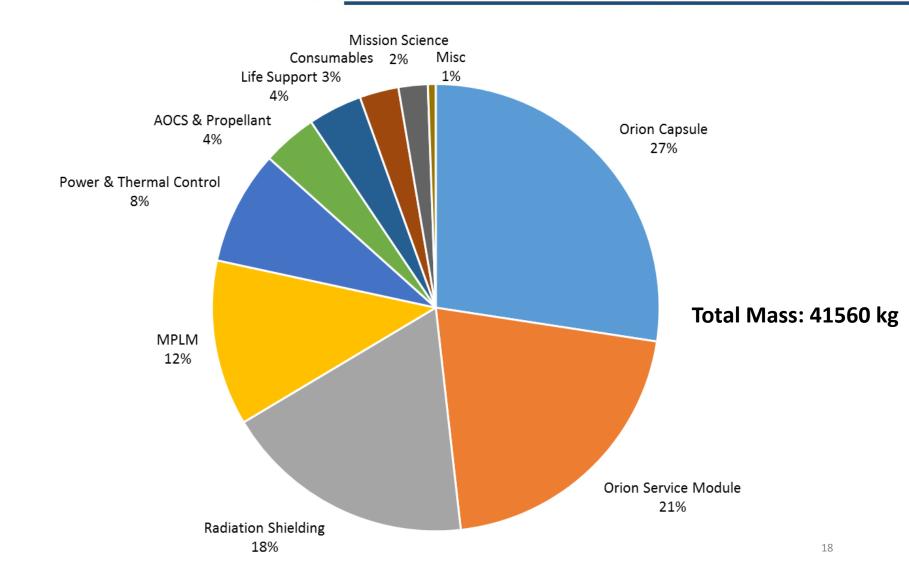
Propulsion System

Driving Requirements

- Ready for 2021 launch
- Required Delta V
- Existing propulsion system

Trade-off Parameters


- Configuration simplicity
- Launcher interface
- No. of required launches
- Delta V margin

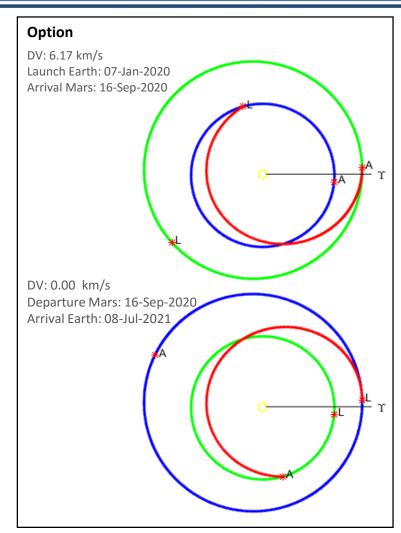

- SLS Exploration Upper Stage (EUS)
- Custom interface to habitat module

Spacecraft Mass Breakdown LEO

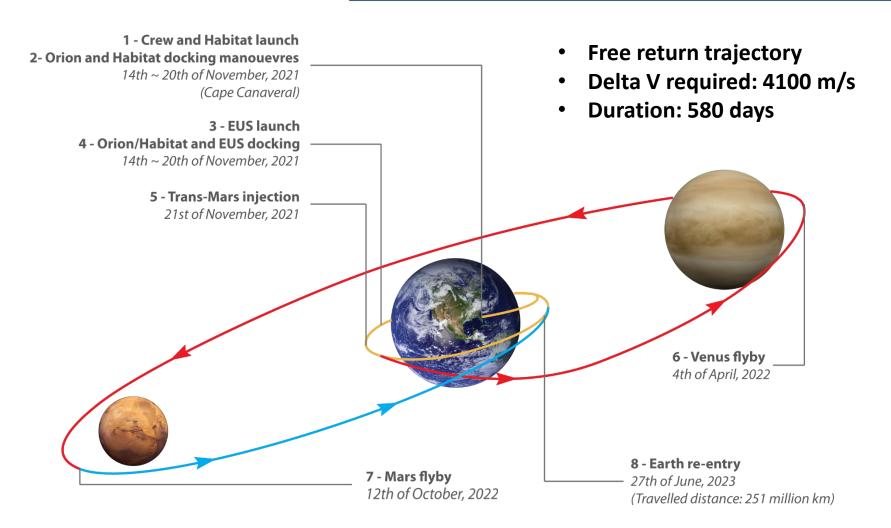
Spacecraft Mass Breakdown Payload

Trajectory

Driving Requirements


- Mission length under 600 days
- Launch after 2021
- Complete mission by end of 2024

Trade-off parameters


- Delta V
- Mission length
- Mission launch
- Solar maximum

Methodology

- Optimisation algorithm using patched conics, Lambert arcs and Lagrange multipliers
- Suggested EVME trajectory included in tradeoff

Trajectory Solution

Launch Configuration

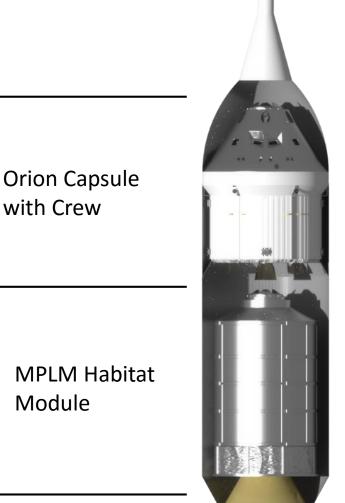
Driving Requirements

- Available for 2021 launch
- Existing or in-development launchers

Trade-off parameters:

- Cost
- Risk
- Design heritage
- Availability

Solution:

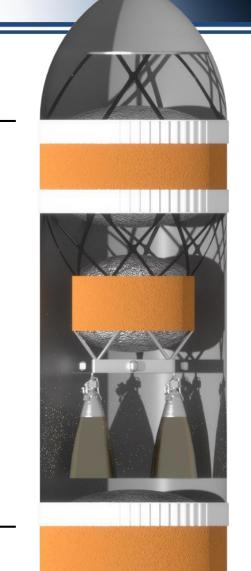

- Two launches (SLS 1B and Falcon Heavy) from Cape Canaveral
- Reduction in LEO Rendezvous and docking
- Cost effective

Launch I Falcon Heavy

- Launch date: 14th November 2021
- Payload to LEO: 41600 kg
- Custom fairing required

Rationale:

- Human rated
- Flight heritage by 2021

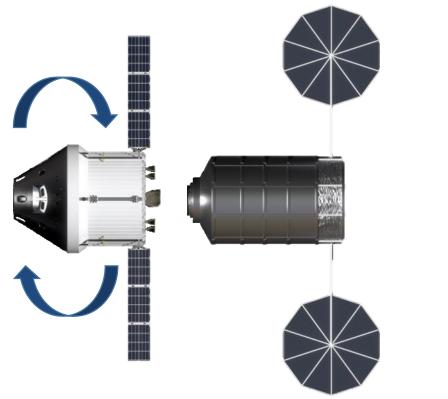


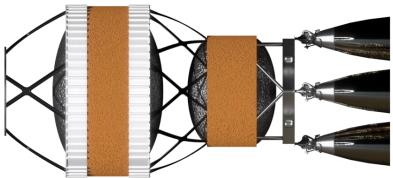
Launch II SLS 1B

- Launch date: 21st November 2021
- Payload to LEO: 104800 kg (including EUS)

Rationale:

- Engine flight heritage (Centaur, STS) EUS
- Reduced mission risk
- Reduced propellant boil-off

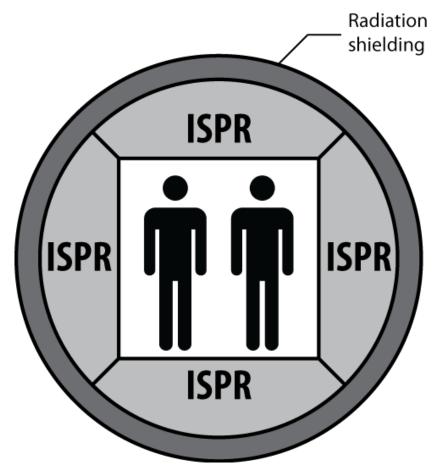

Core Stage


Custom

Payload Fairing

Earth Orbit

- Orion Capsule docks with MPLM habitat module
- One week grace period for testing and launch slip
- Propulsion system docks with habitat module


Trans Mars Injection – TMI

- Delta V required: 4100 m/s
- Propulsion system remains attached
- Point of no return

B.M.

Internal Configuration


- Total Habitable Volume
 - Orion: 8.95m³
 - MPLM: 24m³
- Layout based on Zvezda module
- Use of ISS standard racks
- Service module offers additional nonpressurised volume
- Sleeping quarters double as radiation vaults

Radiation

- Maximal dose of **730 mSv** during the entire mission (RQ04)
- Polyethylene has excellent properties for radiation shielding

Radiation

- Use of a **sleeping vault** to reduce the overall dose
- Radiation shielding total mass: 6900 kg

Dose equivalent (mSv/day) vs Depth (g/cm²)

Venus Flyby

Closest approach altitude: 11000 km

Venus

Earth

Mars

Solar Flux 2601 W/m² 0.723 AU Solar Flux 1361 W/m² 1 AU Solar Flux 586 W/m² 1.524 AU

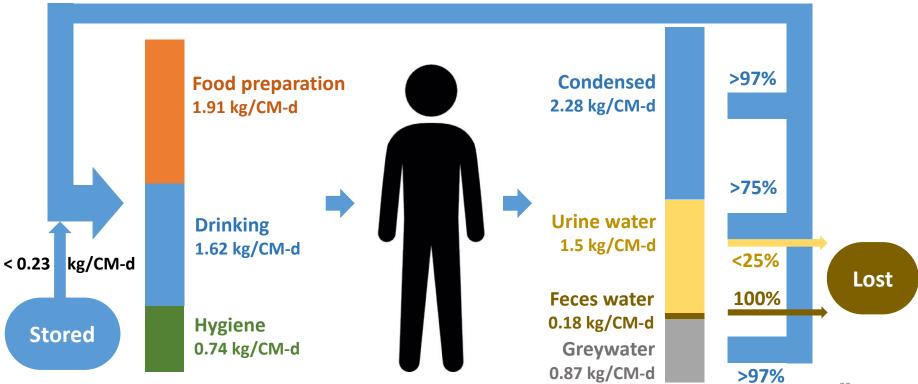
Life Support Atmosphere

- O₂ consumption: 0.835 kg/CM-d
- Atmosphere filtration to a suitable concentration

Key characteristics:

- Pressurisation
- Leak rate
- Efficiency
- Reliability
- Reduced exposure to allergens

Solution:


- Sabatier Process
- Improved ISS Oxygen Generation System (OGS)

TOTEM OGS	
Total N ₂ required	145.1 kg
Water mass required for O ₂	500 kg
Leak rate	0.06 kg/day
CO ₂ scrubbing efficiency	75%
Sabatier efficiency	75%
Chamber pressure	101.3 kPa
Filter type:	Airocide

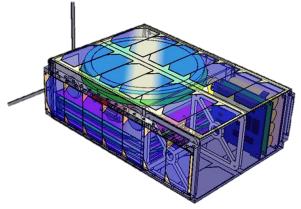
Life Support Water and Food

- Food mass: 755 kg (RQ01) Reduced storage volume: dehydrated food
- Water recycling based on scaled-down ISS Water Processor Assembly (RQ05) Closed loop not assumed

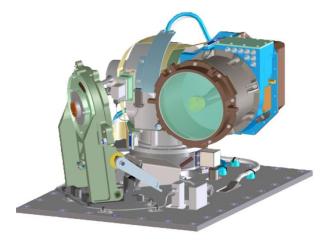
Mars Arrival Closest approach altitude: 350 km

0

0


0

0


er.

Mission Science

- Technology Demonstration
 - High data rate laser communication
 - Biological life support
 - Microalgae photo-bioreactor for CO₂ removal and O₂ production
- Deep Space science
 - Recoverable interplanetary tests
 - Study of bacteria survival time
- Planetary Science
 - Surface penetrators
- Human science
 - Psychological & Physiological effects
 - Help mitigation for future missions

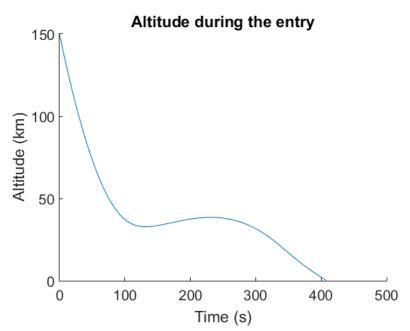
Self contained biological life support demonstrator

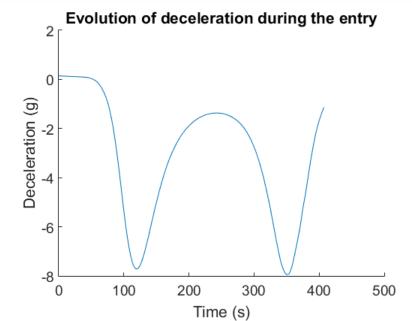
http://esc.gsfc.nasa.gov/assets/images/OpticalComm/OpticalModule.jpg

http://blogs.ft.com/photo-diary/page/48/

Human Health

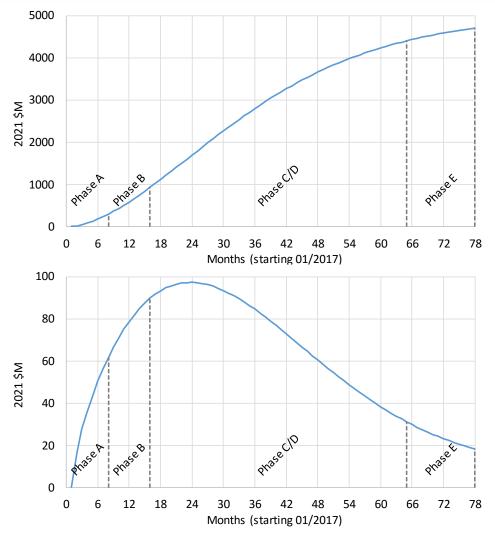
Psychology and Physiology

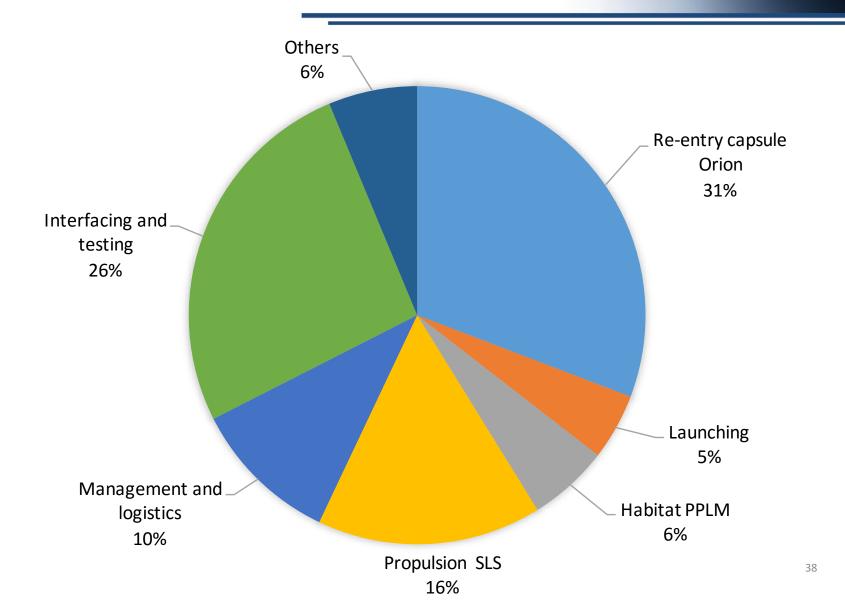

- A sound psychological environment is required:
 - Regular communication with Earth
 - Circadian lighting cycle testing on ISS
 - Tending to plants (hydroponics etc.)
 - Compatibility with other astronaut
 - VR headsets
- Astronauts must maintain physically fit:
 - Treadmill
 - Rowing machine
 - Supplements
 - Motion sickness tablets
 - Pressure gradient suits
 - Trained to a high medical standard



Re-entry

- Use of the Skip re-entry technique
- Re-entry time: 7 minutes
- Peak acceleration: 8g
- Cumulative acceleration over 5g: 100s




http://images.spaceref.com/news/2010/oo20100506_reentry.jpg

Costs Cumulative Costs

- Total cost: 4.7 billion USD
 - FY2021
- Apollo: 156 billion USD
 - 10 manned missions
 - FY2021
- 78 months investment
- Comparison
 - Advanced Mission Cost Model
 - CER's cost regression
 - < 10% difference

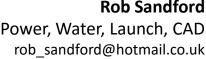
Costs Total: 4.7 Billion USD

- Heritage in design components
 - Orion, MPLM, Exploration Upper Stage
- Two launches
- Mission duration: 580 days
- EVME trajectory
- Payload for Mars flyby: 41560 kg
- Habitable volume: 33 m³
- Mission Cost: \$4.7 Billion USD FY2021

Questions?

Visit mars.cranseds.co.uk for more

Will Blackler Project Manager, Biological Life Support and Communication will.blackler@outlook.com

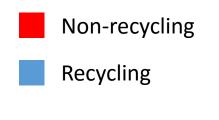

Dan Grinham Configuration and Spacecraft Design dan.grinham@outlook.com

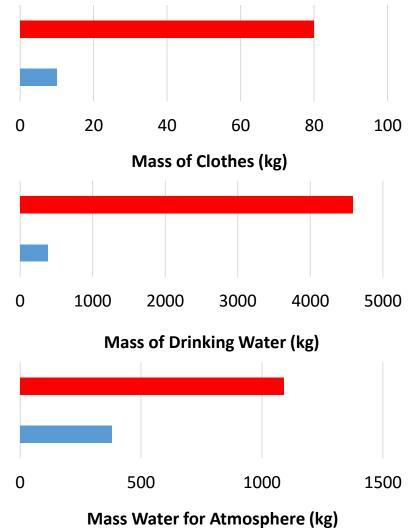
Dale Wyllie Psychology/Physiology and Atmospheric Life Support dale.wyllie@outlook.com

Rob Sandford Power, Water, Launch, CAD rob_sandford@hotmail.co.uk

Mario Cano Astrodynamics, Cost and Website mario.cano.diaz@hotmail.com

Tiago Matos High Level Risks and Consultant tiagomatoscarvalho@gmail.com





Guillaume Renoux Re-entry, Radiation Protection, Mission Science guillaume.renoux@gmail.com

Backup Slide – Life Support On-board Recycling

- Recycling is a key factor in mission success
- Overall mass saving: > 5000 kg
- Heat melt compactor reduces waste volume

Backup Slide – Launch SLS 1B

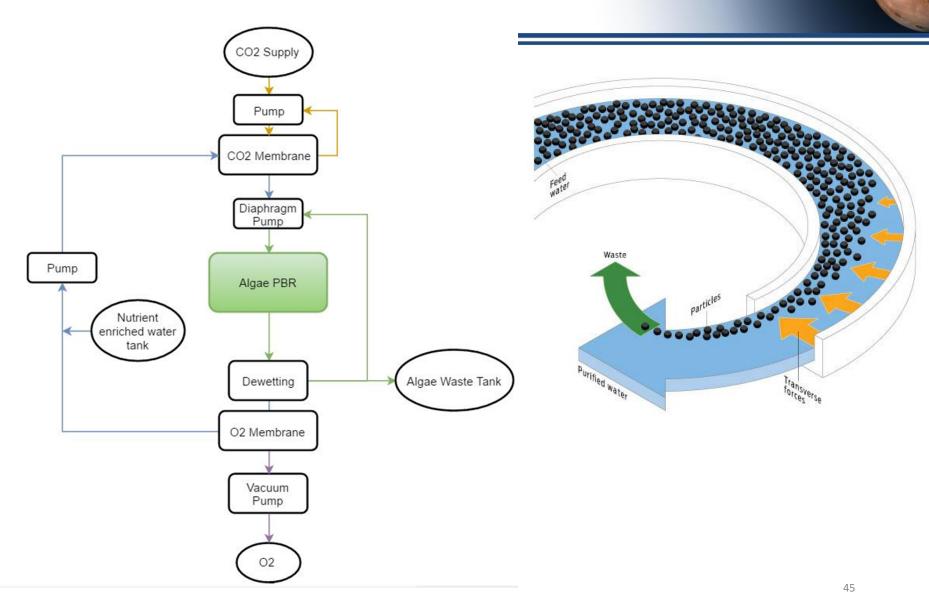
- Delta V to orbit estimated from conservative maximum LEO payload (97.1 tonnes – Pietrobon 2015)
 - This would have underfilled EUS
- Fairing separation assumed at core stage burnout (conservative)
- Assume equal total Delta V for 1 tonne payload → 89.3 tonnes useable propellant remains in EUS

	Flight phase	Delta V (97.1 tonnes LEO)	Delta V (1 tonne LEO)		
	Core + boosters	2429 m/s	2452 m/s		
	Core only	5575 m/s	5774 m/s		
Ś	EUS	1557 m/s	1335 m/s		
	Total	9561 m/s	9561 m/s		

Element	Mass at ignition (tonnes)	Inert mass (tonnes)	Specific impulse (s)
Booster (each)	729.2	100.9	265.4
Core stage	1074.7	110.3	452.2
EUS	139.7 (full prop load)	14.5	462.0

Backup Slide – Power Power Breakdown

- ISS ECLSS subsystems typically have duty cycles <50%
- Two standard operating modes: subsystems "take turns" in standby mode


Subsystem	Power/W (mode 1)	Power/W (mode 2)					
WPA	404	164					
OGA	1210	132					
CDRA	132	1210					
НМС	0	600					
Air purifier	6	56					
Algae bioreactor	g	93					
Coolant loop pumps	330						
Avionics	110						
Other Electronics	275						
Other fluid pumps	360						
Communications	183						
Science	1100						
AOCS	110						
System-level margin (20%)	875	947					
Total	5248	5680					

Backup Slide – Atmosphere

Leak rate calculations

	Nitrogen	Oxygen
%pressure	0.78	0.21
Total pressure	101.3	kPa
Spec gas const	287.058	J/(K-kg)
Temp	293	К
density	1.204404	kg/m^3
density of O2	0.252925	kg/m^3
density of N2	0.939435	kg/m^3
volume	100	m^3
mass of O2	25.29248	kg
mass of N2	93.94351	kg
~total air mass	119.236	kg
leak/day	0.059618	kg/d
Total leak	34.57844	kg
Total N2 req	120.9147	kg
Leak O2 req	7.261472	kg
Leak N2	27.31697	kg

Biological Life Support Thin layer decoupled PBR

Backup Slide – Cost

Cost Breakdown

Phase	Description	Total in FY21	Percentage
A-D	Development Support Facility	\$17M	1%
A-D	Project Management	\$170M	5%
В	Project Systems Engineering	\$255M	8%
В	Safety and Mission Assurance	\$119M	4%
B-D	Configuration Management	\$68M	2%
C/D	Orion Module	\$1000M	31%
C/D	SLS	\$516M	16%
C/D	PPLM	\$185M	6%
C/D	Contractor and subcontractor Fee	\$170M	5%
C/D	Hardware/Software Integration	\$221M	7%
C/D	Integrated Logistics	\$102M	3%
C/D	Systems, integration and test	\$204M	6%
E	Product Assurance	\$51M	2%
E	Site Activation	\$17M	1%
Е	Launch Vehicles & Services	\$135M	4%
E	Annual Operations and Support for Ground Station	\$16M	1%
Total		\$3248M	100%
	Reserves	\$1462M	45%
Total		\$4709M	

Backup Slide – Food

Food Mass calculations

Assumptions:

- Average Metabolic Rate of **2,677 calories** per day
- Respiration quotient of **0.87**

Results in dried food mass of 0.62kg/CM-d

Mission duration: 580 days

Crew size: 2

Food required: 720kg

With 5% margin: 755kg

Backup Slide – Communication Link Budget Analysis

Transmitt	ter		Recieve	r			Frequency	32	GHz	Distance	2.67	AU	System No	ise Temp	80	К
Antenna Diameter		3 m	Antenn	a Diameter	35	m	Wavelength	0.009375	m		3.99432E+11	m				
	Gain	1010647.5		Gain	137560352.9								Data Rate	2100	kbps	
		60.045997 dB			81.38493281	dB										
Power	56.16403093	W	Power	1.00E-1	4 W											
Power Tra	ansmitted	17.49 dB	W 56.164	03093 W												
Power Re	ceived	-140.00 dB	W													
Gain Reci	ever	81.384933 dB														
Gain Tran	smitter	60.045997 dB														
FSL		-294.5736 dB														
Reciever l	Losses	-3 dB														
Transmitt	ter Losses	-2 dB														
Margin		3.7 dB														
System Noise Temp		19.0309 dB														
Data Rate	2	63.222193 dB														
Eb/No		2 dB														
Boltzman		-228.6012 dB														

Backup Slide – High Level Risks

Risk	Consequence	Likelihood	Severity		Mitigation
Crew vehicle readiness/delivery on time	Unable to launch	1	5	5	Delivery plan with systems providers
Habitat module readiness/delivery on time	Unable to launch	1	5	5	Delivery plan with systems providers
Launch vehicle readiness/delivery on time	Unable to launch	1	5	5	Delivery plan with systems providers
Systems launch delay	Postponed operations	2	2	4	Operations in advanced for launch window
등 Systems launch failure	Loss of major systems	1	5	5	Use of qualified or flight proved design
E Crew launch delay	Postponed operations	2	2	4	Operations in advanced for launch window
¹⁹ Crew launch failure	Loss of the crew	1	5	5	Use of qualified or flight proved design Flight abort system
Crew and systems dock failure	Unable to transit	1	4	4	Crew training and interfaces tests
Trajectory failure	Unable to transit	1	4	4	General system check prior burn
Solar radiation peaks	Threat to crew and	1	3		Shielding modification for the habitat
	systems			3	Crew emergency procedures and individual radiation shielded cubicles
	,			3	Mission schedule considering solar cycles
Habitat failure	Threat to crew and systems	1	4		Use of flight proved design
				4	Mechanical/electrical ground tests of interfaces
					Orion used as "lifeboat"
Habitat modification failure	Crew contamination	2	4		Use of qualified or flight proved design
loi				8	Mechanical/electrical ground tests of interfaces
i Interface capsule/habitat failure	Loss of crew	1	5	_	Use of qualified or flight proved design
b				5	Mechanical/electrical ground tests of interfaces
Interface habitat/upper stage failure	Loss of the propulsion	1	5	_	Use of qualified or flight proved design
	Loss of the crew			5	Mechanical/electrical ground tests of interfaces
Communication system failure	Loss of direct	2	3		Communication periods apart from operational critical events
· ·	communication	1		6	Use of alternative/redundant system
					· ,
Power system failure	Systems partially or	1	4	4	Ground tests of batteries and solar panels
	totally dead			4	Orion/habitat redundancy
Life support system failure	Threat to crew	1	4		Use of qualified or flight proved design
				4	Orion/habitat redundancy
					Algae bioreactor
Waste management failure	Limited crew operations	2	3	6	Use of qualified or flight proved design
				6	Ground cycle tests
Crew illness	Unable to perform	3	3	9	Crew training and monitoring
Sec. 1	mission activities			9	Medical supplies
Crew "backwards acceleration"	Physical injuries to the	2	2	4	Acceleration profile
	crew			4	Crew monitoring
Internal repairs/tools	Unable to perform	3	1	3	3D printer, filament and digital repository of printable items
	mission activities			5	

49